Structure, reactivity, and electronic properties of V-doped Co clusters
نویسندگان
چکیده
Citation Datta, Soumendu et al. " Structure, reactivity, and electronic properties of V-doped Co clusters. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Structures and physicochemical properties of V-doped Co 13 clusters have been studied in detail using density-functional-theory-based first-principles method. We have found anomalous variation in stability of the doped clusters with increasing V concentration, which has been nicely demonstrated in terms of energetics and electronic properties of the clusters. Our study explains the nonmonotonic variation in reactivity of Co 13−m V m clusters toward H 2 molecules as reported experimentally ͓Nonose et al., Moreover, it provides useful insight into the cluster geometry and chemically active sites on the cluster surface, which can help to design better catalytic processes.
منابع مشابه
Theoretical insights into the adsorption behavior of CO molecules on the pure and Vn-doped BN nanotubes
Interaction of pure and Vn-doped (8, 0), (12, 0) and (16, 0) boron nitride nanotubes with CO molecules was studied using B3LYP/6-311++G(d) theoretical level. Substituting V instead of B atoms, increased the reactivity of nanotube. From the results, the complex stability depends on the direction and the number of the CO molecules interacted with the nanotube. In this work, the quantum...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملPhotocatalytic self-cleaning properties of lanthanum and silver co-doped TiO2 nanocomposite on polymeric fibers
Titania, single-doped and lanthanum-silver co-doped titania nanocomposite were coated on cellulosic and polyacrylonitrile fibers via sol–gel method. The prepared samples were evaluated using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photolumines...
متن کامل